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Anharmonic contributions to the Debye-Waller factor of Zn for vibrations parallel to the c axis were 
obtained from the temperature dependence of integrated intensities for Bragg scattering at high tem- 
peratures. The M6ssbauer technique was used to measure the purely elastic scattering. Both Gaussian 
and non-Gaussian contributions were found to be important. Their magnitude and sign were derived 
from the experimental data. 

1. Introduction 

The suggestion that accurate measurements of the 
Debye-Waller (DW) factor can play an important role 
in the investigation of anharmonic effects in crystal 
dynamics has been investigated since the early days of 
X-ray diffraction (see, for example, Waller, 1927). A 
number of papers were then devoted to analysing the 
different anharmonic contributions to the DW factor 
(Krivoglaz & Tekhonova, 1961; Maradudin & Flinn, 
1963; Kashiwase, 1965; Willis, 1969; Wolfe & Good- 
man, 1969). Accurate experiments, however, are dif- 
ficult to perform either with X-rays or neutrons, be- 
cause in order to display anharmonic effects, it is 
necessary to work at high temperatures and with high- 
order reflexions, and under these conditions the meas- 
ured reflexions include quite a large amount of thermal 
diffuse scattering (TDS). A solution has been offered 
by the M6ssbauer effect which allows the separation 
of the elastic intensity at Bragg peaks with an energy 
resolution of about 10 -8 eV (O'Connor & Butt, 1963; 
Ghezzi, Merlini & Pace, 1969). Diffraction experi- 
ments using M6ssbauer radiations made it possible 
to detect strong anharmonic contributions to the DW 
factor in NaC1 (Butt & Solt, 1971) and in A1 (Albanese 
& Ghezzi, 1973); moreover, the analysis of these con- 
tributions showed that non-Gaussian or 'anomalous' 
terms were important. 

The present paper deals with the application of the 
M6ssbauer technique to the measurement of both 
Gaussian and non-Gaussian terms of the DW factor 
in Zn crystals. Zn was chosen because of its low Debye 
temperature and melting point. The investigation was 
limited to the vibrations having non-zero components 
parallel to the e axis owing to the larger component 
of the mean-square displacement of the atoms in this 
direction when it is compared with the mean-square 
vibrational amplitude in the basal planes (Wollan & 
Harvey, 1937; Ryba, 1960; DeWames, Wolfram & 
Lehman, 1965; Barron & Munn, 1967; Skelton & 
Katz, 1968). 

2. Experimental method 

The separation of the y-rays which are elastically 
scattered by the crystal from those which undergo 
inelastic scattering was made by using the same pro- 
cedure described in a previous paper (Albanese, Ghezzi, 
Merlini & Pace, 1972). A 100 mCi 57Co source diffused 
in a chromium matrix (10 x 2.5 mm) was used together 
with a 310-stainless steel absorber 98% enriched in 
57Fe, with a thickness equal to 1 mg cm -2 of 57Fe. 

The 14.4 KeV photons were detected by a NaI(TI) 
scintillation counter with a single-channel analyser 
adjusted to reject Zn K~ fluorescence radiation. In 
addition, the amount of fluorescence radiation reaching 
the counter was reduced by inserting a 3 mm thick 
plexiglass filter in the scattered beam. The Zn crystals 
were 3 mm thick lamellae (15 x 15 mm) cleaved along 
the (0001) basal planes from a larger crystal with a 
purity better than 99.99%. They were kept within the 
furnace in an argon atmosphere in order to prevent 
oxidation during high-temperature measurements. 

Using the geometry of the symmetric Bragg case, 
the integrated intensities of the 0002, 0004 and 0006 
reflexions were measured in the temperature range 
295-640 K. The temperature of the sample was kept 
constant within + 1 K. The crystal was rotated around 
the goniometer axis and the area under the elastic 
Bragg peaks was measured after having subtracted the 
inelastic scattering contributions (Compton scattering 
plus phonon scattering). Several temperature cyclings 
were performed in order to ascertain the temperature 
dependences of the integrated elastic intensities and 
particular care was taken to make sure that the dif- 
fraction peaks would maintain a regular shape. The 
fact that the experimental data were not significantly 
affected by modifications to the crystal perfection 
during the experiment can be proved by the regular 
behaviour of the intensity of the 0002 reftexion (see 
Fig. 1), which, being the lowest order reflexion, is 
in fact the one most sensitive to crystal perfection. 
With the wavelength used in this experiment (2= 
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0.8602 A), the calculated ratio between the two ex- 
treme values of the intensity for an ideally mosaic 
and a perfect absorbing crystal was 3.68 at T =  300 K, 
which is considerably larger that the reproducibility 
of the experimental data. 

3. Results and discussion 

In order to ascertain the degree of perfection of the 
crystal, the integrated intensity for 0002, 0004 and 
0006 reflexions was measured at room temperature by 
conventional X-ray apparatus using Mo Ke radiation. 
Absolute values, obtained by measuring the intensity 
of the direct beam by means of calibrated stainless 
steel filters, are compared in Table 1 with the calculated 
ones for an ideally mosaic crystal and a perfect ab- 
sorbing crystal. The harmonic approximation, with an 
X-ray Debye temperature Oz = 166 K (see below), was 
assumed in these calculations; the approximated ana- 
lytical formula given by Hirsch & Ramachandran 
(1950) was used in the case of the perfect absorbing 
crystal. The experimental absolute values for the 0004 
and 0006 reflexions are very near to the calculated 
ones for an ideally mosaic crystal. Moreover, the cal- 
culated temperature dependences of the integrated 
intensities for the two extreme cases of a mosaic and 
a perfect absorbing crystal are not very different. For 
example, for the 0004 reflexion, the two intensities 
at 600 K differ by 17% after they are arbitrarily as- 
sumed to be equal at 300 K. For these two reasons 
we shall assume in the following that in the present 
experiment the temperature dependences of the inte- 
grated intensity of the elastic Bragg peaks at the 0004 
and 0006 reflexions are described with sufficient ac- 
curacy by taking them as proportional to the square 
of the Debye-Waller factor. 
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Fig. 1. Logarithm of the integrated elastic intensities vs tem- 
perature at the 0002, 0004 and 0006 Bragg peaks in Zn. 
The dashed line gives the temperature dependence for the 
0006 reflexion as calculated from the 0004 data if non- 
Gaussian contributions to the DW factor were absent (see 
text). 

Table 1. Experimental absolute values (Rexp) 
of  integrated intensities as compared with the 

calculated ones for an ideally mosaic (RM) and a 
perfect absorbing crystal (Rp); rymmetric Bragg 

case 

hkil RM (10 -5) Re (10 -5) Rexp (10 -s) 
0002 23.84 5.035 9.1 + 0.05 
0004 3.505 1.199 3-4+0.15 
0006 0.5265 0.2927 0.54 + 0-03 

Finally, the considerably high values of the inte- 
grated intensities with respect to the calculated ones 
for a perfect crystal suggest that the elastic intensity 
data were not appreciably affected by the possibility 
of multiple Bragg reflexions. This fact was also checked 
by observing that the intensity of 0004 and 0006 Bragg 
peaks did not change during rotation of the crystal 
azimuth. 

Experimental values of the integrated elastic inten- 
sities of the 0002, 0004 and 0006 peaks are plotted in 
Fig. 1 versus temperature on a semilogarithmic scale. 

Only 0004 and 0006 data were used to study an- 
harmonic contributions to the DW factor. For an 
atom whose equilibrium position is a centre of inver- 
sion symmetry the DW factor can be written (Wolfe & 
Goodman, 1969). 

e -M= (exp ( i Q .  u ) ) = e x p  { - ½ ( ( Q .  u) 2 
+z-~[((Q. u ) 4 ) - 3 ( ( Q ,  u)Z)z]+O(Q6)} (1) 

where Q is the scattering vector, u is the atomic dis- 
placement from the equilibrium position and the angle 
brackets denote thermal average. In the general case 
one must also consider terms containing averages of 
odd powers of the product (Q .  u). Since the basal 
planes in the Zn lattice are mirror planes (1) applies 
also to the c-axis vibrations of Zn atoms. Terms of an 
order higher than Q4 have not been considered here. 

Mean-square vibrational amplitude of  atoms 
The analysis of the temperature dependences of the 

integrated elastic intensities for separating Gaussian 
and non-Gaussian terms in the DW factor was essen- 
tially the one given by Butt & Solt (1971). The c 
component (u~) of the mean-square vibrational am- 
plitude of Zn atoms was obtained from the experi- 
mental data eliminating the Q4 terms through the ex- 
pression 

Rn,( To) ( u ~ ) r -  (U2)r0 = a ~  In ........................... 2 2 Qn,(Qu-Q2,)  Ru,(T) 

_ Rn(To) Q2, In (2) 
2 2 2 Qu(Qn-Qn,)  Rn(T) 

where Qn and Qn, are the lengths of the scattering 
vector for the reflexions of order H and H '  respectively, 
To indicates a reference fixed temperature and Rn(T) 
and Rn,(T) are the integrated intensities of the elastic 
peaks. Equation (2) can be easily derived from (1) by 



906 D E B Y E - W A L L E R  F A C T O R  FOR ZINC 

putting the integrated intensities Rn(T) and Rn,(T) 
proportional to the square of the DW factor e -M. 
Values of (u 2) derived by expression (2) with H = 0006, 
H '=0004  and To = 300 K are plotted in Fig. 2 against 
temperature having assumed (UzZ)aooK=O'024 A, 2. This 
value, which corresponds to an X-ray Debye tempe- 
rature O= = 166 K is given in literature as a result of a 
computation starting from best fitting the phonon 
dispersion curves (De Wames et al. 1965) and as ex- 
perimentally derived from the temperature dependence 
of the anomalous transmission of X-rays (Ghezzi, 
Merlini & Pace, 1971). The present data are in sub- 
stantial agreement with those given by Skelton & Katz 
(1968) up to about 550 K. The temperature dependence 
of (Uz z) is compared in Fig. 2 with the one given in the 
harmonic approximation (straight continuous line) 
and with the one calculated taking into account the 
effect of the thermal expansion on the lattice frequen- 
cies (dashed line). The continuous line was evaluated 
by means of a fixed X-ray Debye temperature O== 
169 K, whereas the dashed line was evaluated from 
thermodynamic data by making a complementary as- 
sumption on the anisotropy of atomic motions in the 
Zn lattice. The calculation is given in detail in the 
Appendix. 

The comparison between the calculated curves and 
the experimental data in Fig. 2 suggest that anhar- 
monic contributions in Q2, aside from the simple term 
giving the correction for thermal expansion, become 
important at elevated temperatures. These terms are 
an inherent effect of lattice anharmonicity, in the sense 
that they cannot be removed by a simple renormaliza- 
tion in the frame of a quasi-harmonic theory. As shown 
by Maradudin & Flinn (1963), the overall amount of 
anharmonic contributions in Q2 (besides thermal ex- 
pansion correction) is given by the two terms 2Ma + 
2Mz arising from the quartic and cubic terms in the 
lattice Hamiltonian, respectively. They are both pro- 
portional to T 2, but the sign of 2M1 + 2M2 cannot be 
predicted a priori and a considerable amount of can- 
cellation is possible between them. The present ex- 
periment shows that 2M1 + 2M2 has a positive sign in 
Zn. Finally, the T z dependence of the overall Gaussian 
contribution to (u 2) has been verified by plotting 
against T 2 the difference between the experimental data 
of (u 2) and the values given in the harmonic approxi- 
mation (see Fig. 3). 

is clearly contradicted by the experimental data, as seen 
by comparing in Fig. 1 the experimental temperature 
dependence for the 0006 reflexion with the one cal- 
culated (dashed line) by equation (3) making use of 
the experimental data for the 0004 reflexion. A dis- 
crepancy as large as 40% can be observed at 620 K. 

The present experimental result is in partial dis- 
agreement with those given by Skelton & Katz (1968). 
Though their data for the c component of the mean- 
square displacement of the atoms substantially agree 
with the present one, these authors found no evidence 
of non-Gaussian contributions to the DW factor. The 
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Fig. 2. Plot of the c component (u~> of the mean-square 
atomic displacement against temperature. The continuous 
straight line and the dashed line give the calculated tem- 
perature dependence of <ul) in the harmonic and in the 
quasi-harmonic approximation, respectively. 
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reasons for this discrepancy may be the following. (i) 
The data of Skelton & Katz refer to a temperature 
range up to about 550 K, whereas the contribution of 
the 'anomalous' term was found here to become sig- 
nificant only above 500 K (ii) Skelton & Katz measured 
Bragg intensities with conventional X-ray techniques 
after subtraction of the thermal diffuse scattering 
(TDS) contributions by analytical evaluation. Pos- 
sible errors in the evaluation of first order and high 
order TDS terms may lead to considerable errors in 
the estimation of Bragg intensities especially when the 
TDS contribution is quite large. For instance, in the 
present experiment with a full divergence of the inci- 
dent beam of 2 ° inelastic scattering at the 0006 peak 
was as much as 54% of the elastic scattering at T= 
523 K. 

The amount of non-Gaussian or 'anomalous' con- 
tributions to the DW factor [for a Gaussian distribu- 
tion of atomic displacements one has <(Q. u)4)= 
3<(Q. u)2) 2] is directly related to the experimental data 
by the expression 

[ < u ~ )  - 3<u~>2]ro - [ < u ~ )  - 3 < u ~ ) 2 ] r  = S (To) - S ( T )  

12 [ 1 Rn(To) 1 Rn,(To) ] 
= Q ~ _  Q2. [~2~ In Rn(T) Q2, In ~ ~ - j  (4) 
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300 K) for vibrations perpendicular to basal planes in Zn 
and to {hhh} and {h00} planes in A1 (Albanese & Ghezzi, 
1973) and NaC1 (Butt & Solt, 1971), respectively. The fact 
that the curve for Zn does not pass through the origin is 
merely an indication that non-Gaussian contributions are 
detectable well above room temperature (,,,500 K, see 
Fig. 1). 

where u o is the component of the atomic displacement 
along the scattering vector Q. Values of S(To) -S (T )  
for the c-axis vibrations in Zn with H=0006,  H ' =  
0004 and T0=300 K are plotted against T 3 -  T0 a in 
Fig. 4 together with similar previously obtained re- 
sults for vibrations perpendicular to {h00} planes in 
NaCI (Butt & Solt, 1971) and to {hhh} planes in AI 
crystals (Albanese & Ghezzi, 1973). The plots are 
straight lines within the experimental errors thus con- 
firming the T a dependence of the Q4 terms in the ex- 
pression of M. The T a behaviour is quite general, as 
was demonstrated by Maradudin & Flinn (1963). On 
the other hand, the magnitude and sign of S(T) de- 
pend on the particular dynamics of the crystal lattice. 
The exact evaluation of the anomalous term S(T) is 
difficult because in addition to phonon frequencies and 
eigenvectors the coefficients of the Fourier expansions 
of the cubic and quartic atomic force constants must 
also be known. We shall therefore limit ourselves to a 
few qualitative comments. In addition to the fact that 
non-Gaussian terms were seen to be important in all 
the examined cases, an interesting feature of the ex- 
perimental results is the sign of S(T). We may dis- 
tinguish two cases. 

(i) Case of A1. We have S(To)>S(T) for T> To. 
Since the absolute value of S(T) increases with tem- 
perature as T a, this means that 3<u~) 2 is greater than 
<u~). The exponential term 

exp {2~ [ (u~) -  3(u~)2]} (5) 

in expression (1) of the DW factor is then less than 
unity and it decreases with temperature as 
exp (-a2Q4Ta). As a consequence of anharmonic in- 
teractions, the thermal displacements of the atoms per- 
pendicular to the reflecting planes follow a distribu- 
tion function which deviates from a Gaussian one in 
order to further decrease the integrated intensity of 
Bragg peaks. 

(ii) Case ofZn andNaC1. In this case we have S(To) < 
S(T) for T> To, so that 3<U~> 2 is smaller than <u~). 
The exponential (5) is greater than unity and increases 
with temperature as exp (c~2Q4T3). This means that 
the distribution function for the atomic displacements 
deviates from a Gaussian one in such a way that the 
intensity of Bragg peaks becomes greater than if it 
were determined by the second moment of u o only. 

As is known, the probability density distribution 
p(u) of an atom, also known as the thermal smearing 
function, can be found by Fourier transform of the 
DW factor exp [ - M ( Q ) ]  (see, for example, Willis & 
Pryor, 1975). As an example, some smearing functions 
were calculated for A1 (T=800 K) and for Zn (T= 
640 K). The results are plotted in Fig. 5. In the AI 
case, u is the displacement of an atom parallel to 
<111 > directions. The experimental data of Albanese & 
Ghezzi (1973) were used. Two functions p(u) of Gaus- 
sian shape were calculated; the first (a) based on the 
value for <u 2) obtained by extrapolating at T=800 
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K in the harmonic approximation the low-temperature 
data, the second (b) using the experimental value of 
(u 2) at T =  800 K but assuming a vanishing contribu- 
tion of the 0 4 term. A third function (c) (dashed line) 
was obtained by taking into account the non-Gaussian 
O4 term: this is the one consistent with the experi- 
mental data. The deviations between (b) and (c) 
smearing functions are entirely due to the presence of 
the Q4 anomalous term. Similar calculations were per- 
formed for Zn at T =  640 K. In this case u is the thermal 
displacement of an atom parallel to the c axis. More- 
over, owing to the positive sign of the argument of the 
exponential (5), a negative Q6 term was inserted in the 
calculation to make the integral 

f ~ exp [ -  M(Q)] cos (uQ)dQ 
0 

convergent. The magnitude of the Q6 term was chosen 
to affect the elastic intensity data of the 0006 reflexion 
at T=640 K by at most 5% . 

As far as we are concerned in the case of Zn and 
NaCI, it is not clear at present if the fact that S(To)< 
S(T) may be understood through simple considera- 
tions of the lattice dynamics of these crystals. We may 
notice that the available experimental data are related 
only with atomic motions perpendicular to lattice 
planes of easy cleavage [{h00} planes in NaCI and 
basal planes in Zn]. As suggested by Borgonovi, 
Caglioti & Antal (1963), the structure of basal planes 
in Zn preserves a strong individuality within the crystal 
so that one may believe that the manner in which the 
lattice breaks up upon melting can be analogous to a 
sequence of successive detachments of layer building 
units. It would be interesting to investigate if there 

were some relation between this behaviour of the lattice 
planes and the anomalous 'increase' of Bragg reflexions, 
expecially when high-temperature M6ssbauer meas- 
urements of DW factors in different crystal directions 
will be available. 

4. Conclusions 

The integrated intensities for Bragg scattering were 
measured at the 0002, 0004 and 0006 reflexions of a 
Zn single crystal in the temperature range 295-640 K. 
The M6ssbauer technique was used to measure the 
purely elastic scattering without any contributions of 
Compton and phonon scattering. The DW factor for 
the c component of the atomic motions was found 
to be considerably affected by the presence of anhar- 
monic non-Gaussian or 'anomalous'  Q4 terms. The 
overall magnitude of the anomalous term was derived 
by comparing the experimental temperature depen- 
dence of Bragg scattering with the one for an ideally 
mosaic crystal. The T s dependence of (u=)-3(u=)4 2 2 
was verified and it was proved that (u 4) is greater than 
3(Uz2) 2, SO that the intensity of Bragg peaks is greater 
than if it were controlled by the second moment of 
Uz only. This result was compared with those pre- 
viously obtained for NaCl and A1 crystals. 

The c component (u 2) of the mean-square vibrational 
amplitude of the atoms was obtained as a function of 
temperature from the experimental data. The com- 
parison of the temperature dependence of (u 2) with 
the calculated dependence in the quasi-harmonic ap- 
proximation suggested the presence of important con- 
tributions proportional to Q2 and T 2, with an overall 
positive sign, which are inherent effects of lattice an- 
harmonicity. 

AI T= 800 °K 
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Fig. 5. Calculated thermal smearing functions p(u) of the atoms for AI (T= 800K, (111) direction) and Zn (T=640K, c axis). 
Curves (a) are based on the harmonic approximation. Curves (b) consider purely Gaussian anharmonic contributions. Curves 
(c) are consistent with the experimental data [Albanese & Ghezzi (1973) for AI; present work for Zn]. 
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APPENDIX 

Owing to the anisotropy of the hexagonal lattice, the 
thermal expansion correction for the DW factor does 
not follow directly from the definition of the Grfineisen 
parameter, as in cubic crystals. We may start with the 
definition of (uZ), the average value of the mean-square 
displacement in all crystal directions as 

3(U2) = 2(U 2) + (U2). (6) 

(U 2) and (u 2) define the directional X-ray Debye tem- 
peratures Ox and Oz through the expression 

3h2T 
2 (7) ( u . , ) -  2 

mKsOx(z) 
which is valid in the classical limit. Equations (6) and 
(7) define an isotropic X-ray Debye temperature O 
which is related to Ox and O~ by 

3 2 1 
- + - - 2 .  (8)  02 O~ O~ 

Owing to lattice expansion O varies with tempera- 
ture as 

O0 • a X2Yx(--2) [ C Yz(--2) 

O - (-a-o0) |,~0) (9) 

where a and c are the lattice constants, the subscript 
0 refers to a particular fixed temperature To and the 
Grt'lneisen parameters ?,~(-2) and Yz(-2) are defined 
by the general formula (15) in the paper of Barron & 
Munn (1966). The particular index ( - 2 )  appears owing 
to the proportionality between 1/0 z and the inverse 
squares of the lattice frequencies. Equations (8) and 
(9), together with the expression (7), are not enough to 
calculate the temperature dependence of (u~) and 
(u~) separately. A complementary equation must be 
assumed which signifies a physical hypothesis. To do 
this, Barron & Munn (1967) suggested that (Uz 2) was 
affected only by expansion along the hexagonal axis, 
and that this was also true for (u~). However, the 
correct Grtineisen parameters for this approximation 
are not yx(-2) and ~ ( - 2 )  but we need new param- 
eters which account for the strain dependence of only 
those phonon modes giving non-vanishing contribu- 
tions to the atomic displacements parallel or perpendi- 
cular to the c axis. Since these latter quantities cannot 
be found as thermodynamic data, we introduced the 
simpler approximation that the ratio (u~)/(u~) should 
be kept proportional to (c/a) 2 with varying tempera- 
ture. The equivalent condition for Ox and O~ is 

O° ao O° eo 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (lO) 
Oxa O~c 

In other words, we assume that in the quasi-harmonic 
approximation the ratio (uZ~)/(uZ~) changes with tem- 
perature only as a consequence of variations in the 
anisotropy of the unit cell. The fact that the experi- 

mental ratio 2 z (u~)/(ux) increases faster than (c/a) 2 es- 
pecially in the high temperature range [see the experi- 
mental data of Skelton & Katz (1968) and the thermal 
expansion data] does not contradict our hypothesis 
and it may be assumed to be an inherent effect of 
lattice anharmonicity. 

The quasi-harmonic temperature dependence of 
@2) was then calculated through equations (8), (9) 
and (10), together with expression (7) and the X-ray 
Debye temperature O ° 254 K, 0_ = O~-  169 K (Skelton & 
Katz, 1968) and Oo=213 K for To= 100 K. This value 
for the reference temperature To was chosen since for 
T< 100 K the available data in the literature do not 
indicate significant anharmonic contributions to (u 2) 
and (Uz2). Finally, we used the values 7x(-2)=1"65 
and ) 'z(-2)=2"77 (Barron & Munn, 1966) for the 
Griineisen parameters, the high-temperature thermal 
expansion data of Owen & Yates (1934) and the low 
temperature ones of Meyerhoff & Smith (1962). 
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